Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Forested headwater streams disproportionately rely on inputs of organic matter to fuel their food webs, and characterizing the breakdown of organic matter offers insights into ecosystem function. Organic matter breakdown rates can be influenced by the availability of limiting nutrients, and describing patterns of breakdown rates across nutrient gradients is increasingly relevant as inland waters undergo eutrophication. Here, we determined the breakdown rates of coarse woody debris (kwood) across 5 streams located at La Selva Biological Station, Costa Rica, that receive a gradient of interbasin modified groundwater inputs, creating a gradient in P concentration (6–134 lg/L soluble reactive P [SRP]). The fastest breakdown rate (kwood 50.77/y) occurred in the stream with the highest SRP, and kwood was positively correlated with SRP across the 5 streams. Further, we characterized the assemblage of macroinvertebrates from wood packs. Macroinvertebrate assemblages were different between the 5 streams, with more dense and diverse assemblages in streams with higher SRP and faster breakdown rates. Our results contribute to a growing field of study on the effect of nutrients on organic matter dynamics in inland waters by characterizing the effect of SRP on breakdown rates of wood in tropical streams.more » « lessFree, publicly-accessible full text available February 3, 2026
-
Meiofauna is a group of heterotrophic organisms smaller than macroinvertebrates but larger than microfauna and characterized by groups such as testate amoebae, ciliates, and nematodes. They are a link between bacteria and resources and macroinvertebrates. However, tropical meiofauna is poorly studied; thus, our goal was to characterize meiofaunal community composition and abundance and assess potential environmental variables controlling these community dynamics. Monthly samplings of meiofauna were conducted for eight months in Quebrada Prieta, El Yunque National Forest, Puerto Rico. Sampling was made in 12 pools, and data on discharge, sediment characteristics, and biotic variables were also collected. A total of 62 meiofaunal morphospecies were identified, with nematodes dominating the community, followed by testate amoebae. Bacterivores and detritivores taxa dominated the community. Meiofaunal abundance was negatively related to discharge and positively to the percentage of coarse sand, nitrate, and macroinvertebrate abundance. The composition of meiofauna in Quebrada Prieta is like the composition reported for temperate streams, at least in major meiofaunal groups present. However, the community in Quebrada Prieta was dominated by testate amoebae. In contrast, temperate streams are often dominated by rotifers and nematodes. Both abiotic and biotic variables are important for meiofaunal communities in the headwater streams in Puerto Rico.more » « less
-
Abstract Hurricanes are major disturbances with important consequences to stream ecosystems as they create major floods and remove riparian vegetation. Understanding their impacts is a priority, as hurricane intensity is expected to increase due to global climate change.Mayfly assemblages in streams fill a diversity of ecological roles and functions. They are important consumers of algae by scraping benthic biofilms and detritivores associated with fine particles and leaf litter. Other taxa are filterers and even predators. Mayflies are also important prey items in aquatic and terrestrial food webs.Here, we assessed the effects of two consecutive hurricanes that impacted Puerto Rico in 2017 to understand how hurricane‐induced changes in the environment alter mayfly composition, secondary production and emergence.The study was conducted in the Luquillo Experimental Forest, Puerto Rico. Mayflies were sampled as nymphs and emerging adults for 6 months before and 17 months after hurricanes Irma and María hit the island in September 2017. Leaf litter inputs, canopy cover and chlorophyllaconcentrations were monitored along with mayflies.Mayfly assemblages were dominated by two genera of Leptophlebiidae before the hurricane,Neohagenulus (two species: N. julioTraver, 1938,N. luteolusTraver, 1938) andBorinquena (one species: B. carmencitaTraver, 1938). Both genera decreased in density after the hurricanes and were replaced with the BaetidaeCloeodes maculipesTraver, 1938 as the dominant taxon. This pattern was observed in both nymph and emerging adult densities.The secondary production of Leptophlebiidae species was highest before hurricane disturbance, with the BaetidaeC. maculipesshowing the opposite pattern.Neohagenulushad an annual production of 445 mg m−2 year−1,C. maculipesof 153 mg m−2 year−1andB. carmencitaof 68 mg m−2 year−1.Overall, the mayfly assemblages in our studied stream are vulnerable to hurricane disturbances. Expected increases in hurricane impacts might result in assemblage shifts that could change assemblage composition and alter energy flows within the ecosystem.more » « less
-
Hull, J Joe (Ed.)The species Chironomus sp. “Florida” has several qualities that make it a potential aquatic laboratory model to be used in Puerto Rico. Its use as such, however, requires a rearing protocol and life cycle description not previously reported. The present study addresses this lack of information by first describing a rearing method obtained through three years of observations. Next we describe and discuss the life cycle and the effects of temperature and feeding on development. The species has a short life cycle (typically 11 days) and larval stages easily identified using body measurements. Temperature affects the duration of the life cycle, with warm temperatures producing faster development than cold temperatures. The effects of different food concentrations vary: in large water volumes, concentrations of 2 mg/larva/day produce faster developmental times, but at low water volumes, small food concentrations of 0.5 mg/larva/day produce faster developmental times. The rearing protocol and life cycle parameters presented in this study are intended to promote the use of this species as a laboratory model. The fast development of Chironomus sp. “Florida” makes it ideal for toxicological studies.more » « less
-
null (Ed.)Introduction: Latin America is a highly urbanized region, with most of its population living in cities and urban centers. While information about urban streams in Latin America is rather limited, streams are expected to experience similar environmental impacts and conservation issues as urban streams in parts of the globe, including habitat loss, channelization, sewage discharge, trash, and loss of riparian habitats. Objective: We surveyed a network of researchers from approximately 80% of the countries in Latin America to obtain information on the condition, state of knowledge, and threats to urban streams in the region. Methods: Most participants were reached via the Macrolatinos@ network (www.macrolatinos.net). Results: We obtained 104 responses from researchers in 18 of the 23 Latin American countries. Most urban streams are impacted or degraded, and inputs of contaminants and wastewater discharges were considered major drivers of stream degradation. Most respondents indicated that stream channelization is common, with some streams completely channelized or buried. Sewage and rainfall runoff management were identified as a major factor degrading streams, with most respondents suggesting that streams are a primary destination for wastewater discharge, much of which is untreated. Major limitations to urban stream conservation in Latin America are the result of limited ecological knowledge, lack of citizen interest or political will to protect them. There are isolated efforts to restore urban streams and riparian zones, but these are initial steps that need further development. Conclusions: Our research network of Latin American scientists proved to be a valuable tool to assess a large number of urban rivers in a relatively understudied region. Urban streams in Latin America face a diversity of stressors and management challenges, and we propose three areas that would benefit from further research to improve our understanding and management of these systems: (1) Studies should focus on the watershed, rather than isolated reaches, (2) researchers should strive to attain a better understanding of ecosystem function and the services provided by urban streams to justify management and restoration efforts, and (3) studies that integrate economic models where downstream users pay for upstream protection and restoration could prove beneficial for many Latin American cities in attempting to address water conservation issues.more » « less
-
null (Ed.)Introduction: Freshwater research in Latin America has been increasing in recent years, with a large participation of scientists based on local institutions. However, researchers in the region are facing diverse challenges, and we lack a regional overview of the status of freshwater research. Objective: To address this, we surveyed researchers in the region to assess the current activity and challenges faced by the scientific community. We were interested in understanding (1) the type of research currently taking place in the region, (2) the major research gaps, as viewed by local researchers, and (3) the main limitations or obstacles slowing the development of freshwater science in the region. Methods: We prepared a questionnaire with 26 questions regarding the background of participants, their ongoing research priorities, the products generated from their research, and the major limitations they are facing as researchers. Results: We obtained 105 answers from researchers in 19 Latin American countries. Some of the important trends identified included: (1) a focus on stream ecosystems under agricultural and natural forest; (2) emphasis on biodiversity assessment and species inventories; (3) limited ecological research, mostly centered on litter decomposition and food web studies; and (4) communicating research in the form of peer-reviewed papers and reports in gray literature. Major limitations to the scientific activity included: (1) language, with a majority of respondents considering their handling of English a handicap; (2) limited access to research equipment; (3) lack of tools, such as taxonomic keys; and (4) limited research funding. Research needs and priorities resulted in three major areas in need of attention: (1) developing taxonomy and systematics; (2) improving our current understanding of ecology and natural history; and (3) understanding species distributions and biodiversity patterns. Conclusions: Latin America has an active community of scientists. There is a need to diversify research topics, without abandoning traditional research areas (e.g., taxonomy, species distribution). We advocate for more collaboration among scientists with similar research goals, regardless of their affiliation. Improving communication and collaboration among universities and countries within Latin America will certainly facilitate overcoming obstacles and will help shaping a brighter future for freshwater research, and sciences in general, in the region.more » « less
-
null (Ed.)Background Hydrological impacts on aquatic biota have been assessed in numerous empirical studies. Aquatic insects are severely affected by population declines and consequent diversity loss. However, many uncertainties remain regarding the effects of hydrology on insect production and the consequences of energy transfer to the terrestrial ecosystem. Likewise, sublethal effects on insect morphology remain poorly quantified in highly variable environments. Here, we characterized monthly fluctuation in benthic and emerged biomass of Ephemeroptera in a tropical lowland stream. We quantified the proportion of mayfly production that emerges into the riparian forest. We also examined the potential morphological changes in Farrodes caribbianus (the most abundant mayfly in our samples) due to environmental stress. Methods We collected mayflies (nymphs and adults) in a first-order stream in Costa Rica. We compared benthic and adult biomass from two years’ worth of samples, collected with a core sampler (0.006 m 2 ) and a 2 m 2 -emergence trap. The relationship between emergence and annual secondary production (E/P) was used to estimate the Ephemeroptera production that emerged as adults. A model selection approach was used to determine the relationship between environmental variables that were collected monthly and the emergent biomass. To determine potential departures from perfect bilateral symmetry, we evaluated the symmetry of two morphological traits (forceps and forewing) of F. caribbianus adults. We used Spearman’s rank correlation coefficients (ρ) to examine potential changes in adult body length as a possible response to environmental stress. Results Benthic biomass was variable, with peaks throughout the study period. However, peaks in benthic biomass did not lead to increases in mayfly emergence, which remained stable over time. Relatively constant mayfly emergence suggests that they were aseasonal in tropical lowland streams. Our E/P estimate indicated that approximately 39% and 20% (for 2002 and 2003, respectively) of the nymph production emerged as adults. Our estimated proportion of mayfly production transferred to terrestrial ecosystems was high relative to reports from temperate regions. We observed a strong negative response of F . caribbianus body length to increased hydrology (Spearman: ρ = −0.51, p < 0.001), while slight departures from perfect symmetry were observed in all traits. Conclusion Our two years study demonstrates that there was large temporal variability in mayfly biomass that was unrelated to hydrological fluctuations, but potentially related to trophic interactions (e.g., fish predation). Body length was a good indicator of environmental stress, which could have severe associated costs for mayfly fitness in ecosystems with high temporal variation. Our results highlight the complex ecological and evolutionary dynamics of tropical aquatic insects, and the intricate connection between aquatic and terrestrial ecosystems.more » « less
-
Abstract Food webs are complex ecological networks that reveal species interactions and energy flow in ecosystems. Prevailing ecological knowledge on forested streams suggests that their food webs are based on allochthonous carbon, driven by a constant supply of organic matter from adjacent vegetation and limited primary production due to low light conditions. Extreme climatic disturbances can disrupt these natural ecosystem dynamics by altering resource availability, which leads to changes in food web structure and functioning. Here, we quantify the response of stream food webs to two major hurricanes (Irma and María, Category 5 and 4, respectively) that struck Puerto Rico in September 2017. Within two tropical forested streams (first and second order), we collected ecosystem and food web data 6 months prior to the hurricanes and 2, 9, and 18 months afterward. We assessed the structural (e.g., canopy) and hydrological (e.g., discharge) characteristics of the ecosystem and monitored changes in basal resources (i.e., algae, biofilm, and leaf litter), consumers (e.g., aquatic invertebrates, riparian consumers), and applied Layman's community‐wide metrics using the isotopic composition of13C and15N. Continuous stream discharge measurements indicated that the hurricanes did not cause an extreme hydrological event. However, the sixfold increase in canopy openness and associated changes in litter input appeared to trigger an increase in primary production. These food webs were primarily based on terrestrially derived carbon before the hurricanes, but most taxa (includingAtyaandXiphocarisshrimp, the consumers with highest biomass) shifted their food source to autochthonous carbon within 2 months of the hurricanes. We also found evidence that the hurricanes dramatically altered the structure of the food web, resulting in shorter (i.e., smaller food‐chain length), narrower (i.e., lower diversity of carbon sources) food webs, as well as increased trophic species packing. This study demonstrates how hurricane disturbance can alter stream food webs, changing the trophic base from allochthonous to autochthonous resources via changes in the physical environment (i.e., canopy defoliation). As hurricanes become more frequent and severe due to climate change, our findings greatly contribute to our understanding of the mechanisms that maintain forested stream trophic interactions amidst global change.more » « less
An official website of the United States government
